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SUMMARY

This paper deals with grid approximations to Prandtl’s boundary value problem for boundary layer
equations on a �at plate in a region including the boundary layer, but outside a neighbourhood of
its leading edge. The perturbation parameter �=Re−1 takes any values from the half-interval (0; 1];
here Re is the Reynolds number. To demonstrate our numerical techniques we consider the case of
the self-similar solution. By using piecewise uniform meshes, which are re�ned in a neighbourhood of
the parabolic boundary layer, we construct a �nite di�erence scheme that converges �-uniformly. We
present the technique of experimental substantiation of �-uniform convergence for both the numerical
solution and its normalized (scaled) di�erence derivatives, outside a neighbourhood of the leading edge
of the plate. By numerical experiments we demonstrate the e�ciency of numerical techniques based on
the �tted mesh method. We discuss also the applicability of �tted operator methods for the numerical
approximation of the Prandtl problem. It is shown that the use of meshes re�ned in the parabolic
boundary layer region is necessary for achieving �-uniform convergence. Copyright ? 2003 John Wiley
& Sons, Ltd.

KEY WORDS: boundary-layer equations; di�erence schemes; piecewise-uniform �tted mesh; �tted
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1. INTRODUCTION

Mathematical modelling of laminar �ows of incompressible �uid for large Reynolds num-
bers Re often leads to a study of boundary value problems for boundary layer equations.
Those quasilinear equations are singularly perturbed, with the perturbation parameter � de�ned
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by �=Re−1. The presence of parabolic boundary layers, i.e. layers described by parabolic
equations, is typical for such problems [1, 2].
The di�culties arising in the numerical solution even of linear singularly perturbed equations

are well known. So, the application of numerical methods developed for regular boundary
value problems (see, e.g. References [3, 4]) to the problems in question yield error bounds
which depend on the parameter �. For small values of �, the errors may be comparable to,
or even much larger than the solution of the boundary value problem. This behaviour of
the approximate solutions requires the development of numerical methods whose errors are
independent of the parameter �, i.e. �-uniformly convergent methods. The presence of a non-
linearity makes it considerably more di�cult to construct �-uniformly convergent numerical
methods. For example, even in the case of ordinary di�erential quasilinear equations there
do not exist �tted operator methods that converge �-uniformly (see, e.g., References [5, 6]).
This negative result has been also shown for linear problems with a parabolic boundary layer,
for example, in References [7–9]. Thus, the development of �-uniform numerical methods for
resolving boundary layer equations is of considerable interest.
At present, �nite di�erence schemes convergent �-uniformly in the maximum norm are

developed and studied for wide classes of linear singularly perturbed problems, including
problems with a parabolic boundary layer (see, e.g., References [8–10]). It often occurs that
the theoretical orders of �-uniform convergence are quite low and would seem to imply that the
constructed schemes will yield errors too large for practical use of these schemes. However,
numerical results show that the actual convergence orders are close to those typical for regular
problems (see, e.g., References [11, 12]). Thus, the experimental technique for a posteriori
estimation of the parameters in error bounds seems to be crucial for problems with rather
complicated behaviour of the solution. Note that our meaning of an a posteriori estimation
is not related to the concept of a posteriori control in adaptive methods. Here, we use a
posteriori estimation to generate an estimate of the error in a numerical solution after the
computations have been completed.
It is of interest to apply the existing technique to the construction of �-uniformly convergent

schemes for boundary layer equations in that part of the boundary region where the layer is
parabolic. Note that, because of the non-linearity of the boundary layer equations, the existing
technique for justifying convergence and a priori estimates of the exact solutions do not allow
us theoretically to prove �-uniform convergence of the numerical solutions in the L∞-norm.
In this connection, we are forced to use only the alternative a posteriori method to study
convergence, in particular, �-uniform convergence of the numerical solutions.
In this paper, we consider grid approximations of a boundary value problem for boundary

layer equations for a �at plate outside a neighbourhood of its leading edge. The boundary
layer in the considered domain is parabolic. We consider the case when the solution of
this classical Prandtl problem is self-similar. We construct a �nite di�erence scheme, which
is a natural development of monotone �-uniformly convergent schemes for linear boundary
value problems with a parabolic layer. For this we use standard numerical approximations on
piecewise uniform meshes which are re�ned in the neighbourhood of the boundary layer. As
is shown, the use of this �tted mesh technique that originated in Reference [8] is necessary
to achieve �-uniform convergence.
We sketch an idea of experimental a posteriori studying �-uniform convergence of numer-

ical approximations for the Prandtl problem. Note that the Prandtl problem of �ow past a
�at semi-in�nite plate has a self-similar solution which is expressed in terms of a solution
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of a quasilinear third-order ODE, the so-called Blasius’ equation, de�ned on a semi-axis.
To evaluate errors in the numerical solution of the Prandtl problem, as an approximation
to the self-similar solution (reference solution) we use a linear interpolant of the numerical
solution to the Blasius equation. We study the behaviour of errors depending on both the
parameter � and the number of mesh points. This method is used to justify �-uniform conver-
gence of both the numerical solution and its scaled derivatives (outside a neighbourhood of
the leading edge of the plate).
We emphasize the growing interest in strong numerical investigations of a boundary layer;

see, for example, Reference [13]. Note that the solutions of boundary layer equations for large
Re are close to the solution of the Navier–Stokes equations in the parabolic boundary layer
region. This means that the reference solution of Prandtl’s problem is the leading term in the
solution of the Navier–Stokes equations at high Reynolds numbers.
We now highlight the unsolved and solved mathematical issues involved in this paper. The

main aim is to develop a direct numerical method that will produce Re-uniformly accurate
solutions to the boundary layer equations, for which �ow past a �at plate is a model problem.
To analyse the convergence of these numerical approximations, we need either a theoretical
error bound or an exact solution. However, for the boundary layer equations, there are cur-
rently no theoretical results on the existence and uniqueness of solutions for all values of the
Reynolds number. An alternative approach to analysing any proposed numerical method is
required. In this paper, the self-similar solution of the Prandtl problem involves solving the
Blasius problem. Hence, to generate a reference solution for the Prandtl problem, we need to
generate accurate approximations to the solution and its derivatives of the Blasius problem.
In Reference [14] theoretical error bounds were derived for the numerical solutions and their
discrete derivatives generated from a new numerical method applied to the Blasius problem.
These computed solutions can then be used to generate reference solutions of the Prandtl
problem for all values of the Reynolds number. Although, we cannot produce theoretical er-
ror bounds for the numerical solutions of the direct method applied to the Prandtl problem, we
can demonstrate numerically that the numerical solutions are converging independently of the
Reynolds number by comparing these numerical solutions to the reference solution (generated
via Blasius).

2. PROBLEM FORMULATION

Let a �at semi-in�nite plate be disposed on the semi-axis P= {(x; y) : x¿0; y=0}. The prob-
lem is assumed to be symmetric with respect to the plane y=0; we discuss the steady
�ow of an incompressible �uid on both sides of P, which is laminar and parallel to the
plate (no separation occurs on the plate). We consider the solution of the problem on the
bounded set

�G; where G= {(x; y) : x∈ (d1; d2]; y∈ (0; d0)}; d1¿0 (1)

Let G0 = {(x; y) : x∈ [d1; d2]; y∈ (0; d0]}; �G0 = �G. Assume S= �G\G, S=⋃
Sj, j=0; 1; 2, where

S0 = {(x; y) : x∈ [d1; d2]; y=0}, S1 = {(x; y) : x=d1; y∈ (0; d0]}, S2 = {(x; y) : x∈ (d1; d2];
y=d0}, �S0 = S0; S0 = �G\G0 = S0. On the set �G, it is necessary to �nd the solution U (x; y)=
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(u(x; y); v(x; y)) of the following Prandtl problem:

L1(U (x; y))≡ �
@2

@y2
u(x; y)− u(x; y)

@
@x

u(x; y)− v(x; y)
@
@y

u(x; y)=0 (x; y)∈G (2a)

L2U (x; y)≡ @
@x

u(x; y) +
@
@y

v(x; y)=0 (x; y)∈G0 (2b)

u(x; y) =’(x; y) (x; y)∈ S (2c)

v(x; y) =  (x; y) (x; y)∈ S0 (2d)

Here � is the viscosity in the case when U (x; y) and x; y are dimensional quantities, and
�=Re−1 when U (x; y) and x; y are dimensionless ones. The parameter � takes arbitrary
values from (0,1].
The solution of problem (2) and (1) exists and is su�ciently smooth when the func-

tions ’(x; y),  (x; y) are su�ciently smooth and, moreover, the functions ’(x; y) and ’(x; y)
together with  (x; y) satisfy appropriate compatibility conditions, respectively, on the sets
S∗= �S1 ∩{S0 ∪ �S2} (i.e. at the corner points adjoining to the side �S1) and S0∗= �S1 ∩ S0 [2]. In
general, the existence and uniqueness of a solution of (2) and (1) remains an open question.
We now wish to de�ne the boundary functions ’(x; y) and  (x; y) more exactly.
In the quarter plane

��; where �= {(x; y) : x; y¿0} (3)

let us consider the Prandtl problem whose solution is self-similar [1]:

L1(U (x; y))=0 (x; y)∈�
L2U (x; y)=0 (x; y)∈ ��\P

u(x; y)=u∞; x=0; y¿0

U (x; y)=(0; 0) (x; y)∈P

(4)

where u∞ is the velocity of free stream at in�nity; u∞=1 for the case of dimensionless
variables.
Problem (4) and (3) is a subproblem of (2) and (1). Because of the special choice of the

boundary functions, a self-similar solution of problem (4) and (3) exists [1].
The self-similar solution of problem (4) and (3) can be written in terms of some function

f(�) and its derivative

u(x; y)= u∞f′(�); v(x; y)= �1=2(2−1u∞x−1)1=2(�f′(�)− f(�)) (5)

where �= �−1=2(2−1u∞x−1)1=2y. The function f(�) is the solution of the Blasius problem

L(f(�))≡f′′′(�) + f(�)f′′(�)=0; �∈ (0;∞)
f(0)=f′(0)=0; lim

�→∞f′(�)=1 (6)

In the sequel, we call the numerical approximations to the velocity components (u; v) from
(5) the reference solutions for the Prandtl problem.
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The functions ’(x; y);  (x; y) in (2) are de�ned by‡

’(x; y)= u(5)(x; y) (x; y)∈ S;  (x; y)= v(5)(x; y) (x; y)∈ S0 (7)

Note that ’(x; y)=’(x; y; �)=0;  (x; y)=  (x; y; �)=0; (x; y)∈ S0. Since we are not including
the leading edge, the techniques in Reference [2] are applicable for the proof of the existence
and uniqueness of a solution of (2), (7) and (1).
As �→ 0, the solution has a parabolic boundary layer in a neighbourhood of the set S0.
To solve problem (2), (7) and (1) numerically, we will construct a �nite di�erence scheme

which generates �-uniformly convergent approximations.

3. DIFFERENCE SCHEME FOR PROBLEM (2), (7) AND (1)

Assume that we know the ‘coe�cients’ multiplying the derivatives (@=@x)u(x; y) and (@=@y)
u(x; y) in the operator L1(2); let these be some functions u0(x; y) and v0(x; y). In this case the
transport equation takes the form

Lu(x; y) ≡
{
�

@2

@y2
− u0(x; y)

@
@x

− v0(x; y)
@
@y

}
u(x; y)=0 (x; y)∈G (8)

The function u0(x; y) outside an m�-neighbourhood of S0 satis�es the condition [1, Chapter 7]§

u0(x; y)¿m0; (x; y)∈ �G and r((x; y); S0)¿m�1=2 (9a)

and also

u0(x; y)¿0 (x; y)∈ �G; y¿0 (9b)

where r((x; y); S0) is the distance from the point (x; y) to the set S0. By virtue of condition
(9b) the operator L(8) is monotone [4] (i.e. a comparison principle is applicable).
For the function v0(x; y) the following estimate [1] is valid:

06v0(x; y)6M�1=2; (x; y)∈ �G (9c)

This means that the product �−1=2v0(x; y) (i.e. the normalized component) is of order O(1),
that is, bounded �-uniformly. Thus, by virtue of (9a)–(9c), the singular part of the solution of
Equation (8) behaves similarly to the singular part for the singularly perturbed heat equation

Lu(x; y) ≡
{
�

@2

@y2
− @

@x

}
u(x; y)=0 (10)

In the case of a boundary value problem for the singularly perturbed equation (10),
di�erence schemes on special piecewise uniform meshes are well known (see, e.g.,

‡ Here and in what follows, the notation w(j:k) indicates that w is �rst de�ned in equation (j:k).
§ Throughout this paper, we denote by M (or m) su�ciently large (small) positive constants which are
independent of the parameter � and of the discretization parameters.
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References [8, 9]). We now use such meshes in the construction of �-uniform schemes for
problem (2), (7) and (1).
To solve the boundary value problem (2), (7) and (1) numerically, we use a classical �nite

di�erence schemes. At �rst we introduce the rectangular grid on the set �G:

�Gh= �!1× �!2 (11)

where �!1 and �!2 are meshes on the segments [d1; d2] and [0; d0], respectively; �!1 = {xi; i=0;
: : : ; N1; x0 =d1; xN1 =d2}, �!2 = {yj; j=0; : : : ; N2; y0 = 0; yN2 =d0}; N1 + 1 and N2 + 1 are the
number of nodes in the meshes �!1 and �!2. De�ne hi

1 = xi+1 − xi, xi; xi+1 ∈ �!1, hj
2 =yj+1 − yj,

yj; yj+1 ∈ �!2, h1 = maxi hi
1, h2 = maxj h

j
2, h= max [h1; h2]. We assume that h6MN−1, where

N = min[N1; N2].
We approximate the boundary value problem by the di�erence scheme

�1(Uh(x; y))≡ �� �yŷuh(x; y)− uh(x; y)� �xuh(x; y)

− vh(x; y)� �y uh(x; y)=0 (x; y)∈Gh (12a)

�21U
h(x; y)≡ � �x uh(x; y) + � �y vh(x; y)=0 (x; y)∈G0

h ; x¿d1

�22U
h(x; y)≡ �x uh(x; y) + � �y vh(x; y)=0 (x; y)∈ S1h (12b)

uh(x; y) =’(x; y) (x; y)∈ Sh (12c)

vh(x; y) =  (x; y) (x; y)∈ S0h (12d)

Here � �yŷz(x; y) and �xz(x; y); : : : ; � �y z(x; y) are the second and �rst di�erence derivatives (the
bar denotes the backward di�erence): � �yŷ z(x; y) = 2(h

j−1
2 + hj

2)
−1(�y z(x; y) − � �y z(x; y)),

�xz(x; y) = (hi
1)

−1(z(xi+1; y) − z(x; y)); : : : ; � �y z(x; y) = (hj−1
2 )−1(z(x; y) − z(x; yj−1)),

(x; y)= (xi; yj).
If the ‘coe�cients’ multiplying the di�erences � �x and � �y in the operator �1 are known (let

these be the functions uh
0(x; y) and vh0(x; y)) and satisfy the condition uh

0(x; y); v
h
0(x; y)¿0 for

(x; y)∈ �Gh, the operator �1 is monotone [4].
Let us introduce a piecewise uniform mesh re�ned in a neighbourhood of the set S0. On

the set �G, we consider the grid

�G∗
h = �!1× �!∗

2 (13)

where �!1 is a uniform mesh on [d1; d2], �!∗
2 = �!∗

2(�) is a special piecewise uniform mesh
depending on the parameter � and on the value N2. The mesh �!∗

2 is constructed as follows.
We divide the segment [0; d0] in two parts [0; �] and [�; d0]. The stepsize of the mesh �!∗

2 is
constant on the segments [0; �] and [�; d0], and equal to h(1)2 = 2�N

−1
2 and h(2)2 = 2(d0−�)N−1

2 ,
respectively. The value of � is de�ned by

�= min[2−1d0; m�1=2 lnN2]

where m is an arbitrary positive number.
In the case of the boundary value problem (2), (7) and (1), it is required to study whether

the solutions of the di�erence scheme (12) and (13) converge to the exact solution. The
solution of problem (2) and (7) on the set �G(1) is su�ciently smooth for �xed values of
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the parameter �, but its y-derivatives grow unboundedly in a neighbourhood of the boundary
layer as �→ 0. The di�erence scheme (12) and (13) approximates problem (2), (7) and (1)
on its solution with the �rst-order of accuracy in x and y. In that case when the functions
uh(x; y) and vh(x; y) considered as the coe�cients multiplying the derivatives � �xuh(x; y) and
� �yuh(x; y) are non-negative, the di�erence scheme (12) and (13) is monotone.
Note that the main di�erence between the scheme suggested in the paper and standard well-

known schemes consists in using meshes whose stepsize, transversal to the boundary layer,
in a neighbourhood of the layer is small and is appropriate for the value of the parameter
�. It is obvious from the structure of the mesh (13) that its stepsize in the y direction
changes abruptly at the transition point y=� when � is small. This abrupt change of mesh
size, generally speaking, can lead to a loss in well conditioning of a scheme. Note that this
question requires a further theoretical study. Nevertheless, no loss in conditioning as compared
to regular problems was revealed in numerical experiments for the values of � and N within
the broad diapasons for reaction–di�usion and convection–di�usion problems (see, e.g. results
of a series of numerical experiments in References [12, 15, 16]). It is worth noting that the
abrupt change in mesh size has no adverse e�ect on the stability of the numerical scheme
(see Reference [16]). No stability di�culties associated with the use of piecewise-uniform
�tted meshes were encountered in these and other numerical studies.
We mention certain di�culties that arise in studying convergence properties. In the case

of �-uniformly convergent di�erence schemes for linear problems, methods are well devel-
oped to determine numerically the parameters in the error bounds (orders of convergence
and error constants for �xed values of � and �-uniformly), see, e.g. Reference [12], where
�-uniform convergence is known in advance from theoretical studies. Formally these methods
are inapplicable for problem (2), (7) and (1) because the �-uniform convergence of scheme
(12) and (13) has not been established. Nevertheless, the results of such investigations of
error bounds seem to be interesting for practical use.
The pointwise comparison of the exact solutions of problem (2), (7) and (1) with the

solutions of di�erence scheme (12) and (13) gives us more detailed knowledge about the
behaviour of the error bounds. To �nd the exact solutions of Prandtl’s problem, we shall use
the Blasius solution of problem (6). Note that the numerical solution of the Blasius problem
yields its own additional errors. As for scheme (12) and (13), it is of great interest to study
errors for computation of which we use the ‘exact’ solutions of the Prandtl problem obtained
on the basis of the discrete solutions of Blasius’ problem.
Note that the di�erence scheme (12) and (13) is non-linear. To �nd an approximate solution

of this scheme, we must construct a proper iterative method.

4. ITERATIVE DIFFERENCE SCHEME FOR THE PRANDTL PROBLEM

Note that (2a) is a parabolic equation in which the variable x plays the role of time. The
problem (12) and (11) is solved on levels with respect to the variable xi ∈ �!1. To �nd the
discrete solution at the level xi0¿d1, we use an iterative method.
In order to de�ne the iterative di�erence scheme we must specify the boundary function

’(x; y); (x; y)∈ Sh ( (x; y)=0; (x; y)∈ S0h). The function ’(x; y) has no analytical represen-
tation. Instead of the function ’(x; y), we use a function ’h(x; y) which can be found by
using the grid solution of the Blasius’ problem.
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Let us describe an iterative process used in the computation of the solution at the level xi0+1

for xi0¿d1. Assume that the solution of the discrete problem (or its approximation) is known
for x= xi0 . The function Uh(x; y) for x= xi0+1, y∈ �!2 is the solution of the non-linear system
of algebraic equations. To compute a new iteration for the component uh

k+1(x; y), x= xi0+1, we
use (12a) in which we replace the coe�cients multiplying the derivatives � �x uh

k+1 and � �y uh
k+1

by the known components uh
k and vhk from the previous iteration. The component vhk+1(x; y),

x= xi0+1 is computed from (12b) by using the known component uh
k+1. We continue these

iterations until the di�erence between the functions uh
k (x; y), �

−1=2vhk (x; y) for x= xi0+1, y∈ �!2
at the neighbouring iterations becomes less than some prescribed su�ciently small value �¿0,
which de�nes the required accuracy of the iterative solution. As an initial guess, namely, for
the function Uh

0 (x; y), x= xi0+1, we use the known solution at the level x= xi0 .
For x= xi0 = x0 =d1, to compute the grid solution at x= xi0+1 we use the above-described

iteration process in which we choose, as an initial guess Uh
0 (x; y), x= xi0+1, the function

Uh
0 (x; y)= (u

h
0(x; y)=’h(x; y); vh0(x; y)=  (x; y)=0), x= x1, y∈ �!2.

The function uh(x; y) at the level x= x0 =d1 is known according to the problem formulation;
the function vh(x; y) is computed from (12b).
Thus, we obtain the following �nal iterative di�erence scheme:

�1(uh
k (x; y); u

h
k−1(x; y); v

h
k−1(x; y))≡ �� �yŷuh

k (x; y)− uh
k−1(x; y)� �x u

h
k (x; y)

− vhk−1(x; y)� �y u
h
k (x; y)=0; y∈!2

�21(v
h
k (x; y); u

h
k (x; y); u

h
K(xi−1)(x

i−1; y))≡ (xi − xi−1)−1[uh
k (x; y)− uh

K(xi−1)(x
i−1; y)]

+ � �yvhk (x; y)=0; y∈ �!2; y �=0

uh
k (x; y) = ’h(x; y); y=0; d0; vhk (x; y)=0; y=0

uh
0(x; y) =

{
uh
K(xi−1)(x

i−1; y); xi¿x2

’h(x=d1; y); xi= x1; y∈!2
(14)

vh
0(x; y) =

{
vhK(xi−1)(x

i−1; y); xi¿x2

0; xi= x1; y∈ �!2; y �=0
max
y∈ �!2

|uh
K(x; y)− uh

K−1(x; y)|; �−1=2 max
y∈ �!2

|vh
K(x; y)− vh

K−1(x; y)|6�

max
k¡K

[
max
y∈ �!2

|uh
k (x; y)− uh

k−1(x; y)|; �−1=2 max
y∈ �!2

|vhk (x; y)− vhk−1(x; y)|
]
¿�

for x= xi; i=1; : : : ; N1; k=1; : : : ; K; K =K(xi)

�22(v
h(x; y); uh

K(x1)(x
1; y))≡ (x1 − x0)−1[uh

K(x1)(x; y)− ’h(x; y)]

+ � �yvh(x; y)=0; y∈ �!2; y �=0
for x= x0 =d1
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Scheme (14) and (13) permits us to compute the function Uh(x; y)= (uh(x; y), vh(x; y)),
(x; y)∈ �Gh, namely, the components uh

K(xi)(x; y), v
h
K(xi)(x; y) for x

i¿x1, y∈ �!2 and the function
vh(x; y) for xi= x0 =d1, y∈ �!2. We call the function Uh(x; y), (x; y)∈ �Gh satisfying (14) the
solution of the iterative di�erence scheme (14) and (13).

5. APPROXIMATION OF THE SELF-SIMILAR SOLUTION TO THE PRANDTL
PROBLEM BY USING THE BLASIUS’ EQUATION

In the case of scheme (14) and (13), to analyse the approximation error for the solutions of
problem (2), (7) and (1) and their derivatives, we use the self-similar solution (5) de�ned
by the solution of the Blasius’ problem (6).
For the boundary value problem (6) we must construct a �nite di�erence scheme that allows

us to approximate both the Blasius’ solution and its derivatives on the semi-axis �¿0. It is
required to �nd ‘constructive’ di�erence schemes, i.e. di�erence schemes on meshes with a
�nite number of nodes.
We approximate problem (6) by the following di�erential problem on a �nite interval. Let

f?(�), �∈ [0; T ], where the length T of the interval is su�ciently large, be the solution of
the boundary value problem

L(f?(�))≡f′′′
? (�) + f?(�)f′′

? (�)=0; �∈ (0; T )
f?(0)=f′

?(0)=0; f′
?(T )=1

(15a)

We complete a de�nition of the function f?(�) on the in�nite interval (T;∞) by setting
f?(�)=f?(T ) + (�− T ) for all �¿T (15b)

The continuous problem (15a) and (15b) is approximated by a discrete problem. For this
we introduce a uniform mesh on the interval [0; T ] as follows:

�!0 = {�i= ih; i=0; 1; : : : ; N ; �0 = 0; �N =T} (16)

with stepsize h=TN−1, where N+1 is the number of nodes in the mesh �!0. Assume T = lnN .
On the mesh �!0, we approximate problem (15a) by the grid problem

�(fh(�))≡�� �� �� fh(�) + fh(�)�� �� fh(�)=0; �∈ �!0; � �= �0; �1; �N

fh(0)=�� fh(0)=0; � �� fh(T )=1
(17a)

Here �� �� z(�) and �� �� �� z(�) are the second (centred) and third di�erence derivatives:

�� �� z(�)= h−1(�� z(�)− � �� z(�)); �� �� �� z(�)= h−1(�� �� z(�)− �� �� z(�i−1)); �= �i

The function fh(�) on the interval (T;∞) is de�ned by
fh(�)=fh(T ) + (�− T ); �∈ (T;∞) (17b)

Equations (17a) and (17b) allows us to �nd the function fh(�) for �∈ �!0 and �∈ (T;∞).
To determine the components of the solution and their derivatives for the Prandtl problem,
we need derivatives of the function fh(�). Let �k

� f
h(�)= ��(�k−1

� fh(�)), �∈ �!0, �6�N−k ,
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k¿1, be the kth di�erence derivatives of fh(�) on �!0. Assume �k
� f

h(�)=1 for k=1,
�= �N and �k

� f
h(�)=0 for k¿2, �∈ �!0, �N−k+16�6�N . By �fh(k)(�), �∈ [0; T ], we denote

the linear interpolant constructed from the values of the functions �k
� f

h(�), �∈ �!0, k¿0;
�0� f

h(�)=fh(�). The function �fh(k)(�) is extended to the interval (T;∞) by the de�nitions:
�fh(k)(�)=fh(�) for k=0, �fh(k)(�)=1 for k=1, �fh(k)(�)=0 for k¿2, �∈ (T;∞). We shall
call the function �fh(�)= �fh(k=0)(�), �∈ [0;∞), de�ned in such a way, the solution of problem
(17a), (17b) and (16) and the functions �fh(k)(�), k¿1, the derivatives (of order k) from the
solution of problem (17a), (17b) and (16).
Problem (17a), (17b) and (16) is non-linear. Let us describe an iterative di�erence scheme

for the approximate solution of problem (17a), (17b) and (16).
On the mesh �!0(16), we �nd the function fh

R (�) by solving successively the problems

�(fh
r (�); f

h
r−1(�))≡�� �� �� fh

r (�) + fh
r−1(�)�� �� fh

r (�)=0; �∈ �!0; � �= �0; �1; �N

fh
r (0)=�� fh

r (0)=0; � �� fh
r (T )=1; r=1; : : : ; R

(18a)

where fh
0 (�)= �; �∈ �!0, R is a su�ciently large given number. For �∈ (T;∞) we de�ne the

function fh
R (�) by setting

fh
R (�)=fh

R (T ) + (�− T ); �∈ (T;∞) (18b)

Problem (18a) and (16) is linear with respect to the function fh
r (�), �∈ �!.

From the values of the function fh
R (�), similarly to the function �fh(k)(�), �∈ [0;∞), we con-

struct the function �fh(k)
∗ (�)= �fh(k)

R (�), �∈ [0;∞), k¿0. We call the function
�fh
∗ (�)= �fh(k)

∗ (�), �∈ [0;∞) for k=0 the solution of problem (18a), (18b) and (16), and the
functions �fh(k)

∗ (�), k¿1 the derivatives of the problem solution. Note that the derivatives of
the function �fh(k)

∗ (�) have a discontinuity of the �rst kind at �= �N−k , k¿2.
For

T =T (N )=M1 lnN; R=R(N )=M2 lnN (19)

where M1; M2 are su�ciently large numbers, the solution of problem (18a), (18b), (16) and
(19) together with its derivatives up to order K (where K is �xed) converges, as N →∞, to
the solution of problem (6) and to the corresponding derivatives.
Note that the di�erential equation in (15a) is a reaction–di�usion equation with respect

to the function f̃(�)=f′
∗ (�), moreover, the problem (15a) is monotone with respect to the

function f̃(�) (satis�es the maximum principle).
When the function fh(�) is non-negative, the equation (17a) is monotone with respect to

the function f̃h(�)= � �� fh(�). The consideration of linear analogues of this equation shows
that, in order to achieve convergence of the iterates as N →∞, it su�ces that the value T
and the number R of iterations satisfy condition (19). For these linear analogues we obtain
�rst (up to a logarithmic factor) order accuracy. The parameter-uniform accuracy and stability
issues associated with scheme (18a), (18b), (16) and (19) are discussed also in Reference
[16, Chapters 10 and 11].
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The theoretical and numerical analyses given in Reference [14] result in the estimate:

|f′(�)− �fh(1)
∗ (�)|; |�f′(�)− f(�)− (� �fh(1)

∗ (�)− �fh
∗ (�))|

|�k(f′′(�)− �fh(2)
∗ (�))|6MN−�; �∈ [0;∞); k=0; 1; 2

(20)

where � is some number (0¡�¡1). It follows from estimates (20) that the di�erence scheme
(18a), (18b), (16) and (19) in the case of Prandtl’s problem (2), (7) and (1) allows us to
�nd the normalized components with the normalized (i.e. �-uniformly bounded) derivatives,
namely, u(x; y), �−1=2v(x; y), (@=@x)u(x; y), �1=2(@=@y)u(x; y), �−1=2(@=@x)v(x; y), (@=@y)v(x; y),
(x; y)∈ �G(1), with guaranteed (controllable) �-uniform accuracy (see Reference [16, Chapter 11]
for numerical results). Note that, by virtue of (20), the error estimate for the reference solution
obtained in this way is independent of the parameter � and determined only by the value of
N , that is, the number of mesh intervals into which we divided the interval [0; T ]. Because
of (19), the stepsize of mesh (16) is de�ned by

h=TN−1 =M1N−1 lnN (21)

Thus, in the case of Prandtl’s problem (2), (7) and (1) the components of its solution and
the partial derivatives with respect to x and y, which are determined via the solutions of
scheme (18a), (18b), (16) and (19) for Blasius’ problem (6), permit us to form the boundary
conditions (with controllable �-uniform accuracy) in the iterative di�erence scheme (14) and
(13). Besides, the solutions of scheme (18a), (18b), (16) and (19) allow us to analyse the
�-uniform convergence of special di�erence schemes, in particular, of schemes (14), (13) and
(12), (13).
Note that this numerical method for Blasius’ problem generates global approximations (valid

for all �∈ [0;∞)) to the solution and its derivatives, whose accuracy is determined solely by
N (the number of nodes in the interval [0; M1 lnN ]). The e�ciency of such a method can be
contrasted with the in�nite-series representation for the ‘semi-analytic’ solution to the Blasius’
problem given in Reference [17], for which the accuracy of the truncated (with speci�c non-
evident choices of two auxiliary parameters) series is unknown for all �∈ [0;∞).
By numerical experiments, implemented according to the above techniques, in Reference

[16, Chapter 12] we show the �-uniform convergence of schemes (14), (13) and (12), (13)
of the direct method; also therein we �nd the convergence orders for the numerical approxi-
mations to the solutions and derivatives for Prandtl’s problem (2), (7) and (1). In Section 7,
for the convenience of the reader, we repeat some minimal numerical results from [16] con-
�rming the e�ciency of the numerical method based on Blasius’ approach, thus making our
exposition self-contained and complete.

6. ON FITTED OPERATOR SCHEMES FOR THE PRANDTL PROBLEM

As was shown in References [8, 18] (see also References [7, 9]) for a singularly perturbed
parabolic equation with parabolic boundary layers, there do not exist �tted operator schemes
on uniform meshes that converge �-uniformly. Note that the coe�cients in the terms with �rst-
order derivatives in time and second-order derivatives in space do not vanish in the equations
considered in References [8, 18]. Note also that, in the Prandtl problem, the coe�cient mul-
tiplying the �rst derivative with respect to the variable x, which plays the role of the time
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variable, vanishes on the domain boundary for y=0. Unlike the problem studied in Refer-
ence [8], where the boundary conditions do not obey any restriction, besides the requirement
of su�cient smoothness, problem (2), (7) and (1) is essentially simpler. The data of this
problem, i.e. the zero right-hand sides of equations (2a), (2b) and the boundary conditions
(2c) and (2d), and therefore the solution itself are de�ned only by the one parameter u∞.
We are interested whether or not one variant of a �tted operator method, in which the �t-
ting coe�cients (depending on �) are independent of the value u∞, is applicable to construct
�-uniformly convergent schemes.
In Reference [19] an �-uniform �tted operator method was constructed for a linear parabolic

equation with a discontinuous initial condition in the presence of a parabolic (transient) layer.
Such a �tted operator scheme was successfully constructed because all of the singular com-
ponents of the solution (their main parts) are de�ned, up to some multiplier, by just one
function. In view of the simple (depending on the one parameter u∞) representation of the
solution for the Prandtl problem, it is not obvious that for this problem there are no �tted
schemes on uniform meshes which converge �-uniformly.
We will try to construct a �tted operator scheme starting from (12a) under the assumption

that the function vh(x; y) is known, where vh(x; y)= v(x; y). Let us consider a �tted operator
scheme of the form

�1∗(uh(x; y))≡��(2)�y �y uh(x; y)− uh(x; y)� �xuh(x; y)

− �(1)v(x; y)� �y uh(x; y)=0 (x; y)∈Gh

uh(x; y)=’(x; y) (x; y)∈ Sh

(22a)

where

�Gh (23)

is a uniform rectangular grid, with steps h1 and h2 in x and y, respectively; the parameters

�(i) = �(i)(x; y; �; h1; h2); i=1; 2 (22b)

are �tting coe�cients.
The di�erence scheme (22a), (22b) and (23) is a �tted scheme for the following boundary

value problem:

L1∗(u(x; y))≡�
@2

@y2
u(x; y)− u(x; y)

@
@x

u(x; y)− v(x; y)
@
@y

u(x; y)=0 (x; y)∈G

u(x; y)=’(x; y) (x; y)∈ S
(24)

where the function v(x; y)= v(5)(x; y) is considered to be known.
The derivatives of the function u(x; y) can be represented as follows:

@
@x

u(x; y)=−2−1u∞x−1f′′(�)�;
@2

@x2
u(x; y)=4−1u∞x−2[f′′′(�)�2 + 3f′′(�)�]

@k2

@yk2
u(x; y)=2−k2=2u1+k2=2∞ �−k2=2x−k2=2f(k2+1)(�); k264; �= �(5)(x; y; �)

(25)
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and for the function v(x; y) we have representation (5). Taking into account the last repre-
sentations in (25) and also the estimates for the derivatives of the function f(�), we �nd∣∣∣∣ u(x; y)

(
@
@x

− � �x

)
u(x; y)

∣∣∣∣6Mh1 (x; y)∈Gh

�
(
�y �y − @2

@y2

)
u(x; y)¿mh22(�

1=2 + h2)−2

m�2h2(�1=2 + h2)−16−v(x; y)
(
� �y − @

@y

)
u(x; y)6M�2h2(�1=2 + h2)−1

(x; y)∈Gh; �6M0; �= �(x; y; �)

(26)

From estimates (26) it follows that under the condition

�(1) = �(2) = 1 (27)

the error in the approximation of the solution of the boundary value problem is of order 1 for
the terms of the equation which contain the y-derivatives, when �6M0 and the stepsize h2 is
commensurable with �1=2. The error for the term involving the derivatives in x is �-uniformly
small for small values of h1 on the whole domain �G.
Note that under condition (27) and for �6m0, the main term of the truncation error is

generated by errors caused by the numerical approximation of the second derivatives. These
satisfy the bounds

48−1u3∞�−1 h22x
−2 min

�1
f(5)(�1)6 �

(
�y �y − @2

@y2

)
u(x; y)

6 48−1u3∞�−1 h22x
−2 max

�2
f(5)(�2); �(x; y)6m0 (28)

where �1; �2 ∈ [�(x; yj−1); �(x; yj+1)]; (x; yj)∈Gh.
In the variables x; �, where �= �−1=2y, the domain G transforms into the domain G�, and

the �rst equation from (24) takes the form

L1∗0(u0(x; �))≡ @2

@�2
u0(x; �)− u0(x; �)

@
@x

u0(x; �)

− ṽ0(x; �)
@
@�

u0(x; �)=0 (x; �)∈G� (29)

where u0(x; �)= u(x; y(�)), v0(x; �)= v(x; y(�)), ṽ0(x; �)= �−1=2 v0(x; �); u0(x; �)= u∞ f′(�0),
ṽ0(x; �)= (2−1u∞ x−1)1=2 (�0f′(�0) − f(�0)), �0 = �0(x; �)= (2−1u∞ x−1)1=2�. The di�erential
equation (29) in the variables x; � does not depend on �. The discrete equation (22a) in these
new variables takes the form

�1∗0(uh0(x; �))≡ �0(2)�� �� u
h0(x; �)− uh0(x; �)� �x uh0(x; �)

− �0(1)ṽ
0(x; �)� �� u

h0(x; �)=0 (x; �)∈Gh� (30)
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where uh0(x; �)= uh(x; y(�)), �0(i) = �0(i)(x; �; �; h1; h2�)= �(i)(x; y(�); �; h1; h2 = h2(h2�)), i=1; 2,
h2�= �−1=2h2. The coe�cient ṽ0(x; �) from the grid equation (30) is independent of �, and
also the parameter � does not in�uence the mesh �Gh�, which is de�ned only by its stepsizes
h1 and h2� with respect to the variables x; �. Because (29) and the mesh �Gh� do not depend
on the value of the parameter �, it is natural to seek a numerical approximation of (29) on the
mesh �Gh� in form (30), based on a �tted operator method, where the coe�cients, in particular,
the �tting coe�cients �0(i), are independent of the parameter �:

�0(i) = �0(i)(x; �; h1; h2�); i=1; 2 (31)

The �tting coe�cients are assumed to be bounded (the monotonicity of the scheme is not
used)

|�0(i)(x; �; h1; h2�)|6M (x; �)∈Gh�; i=1; 2 (32)

In this class of di�erence schemes we seek to construct �tted operator schemes.
Note that the largest contribution to the error of the solution of (30) is the term �0(2) �� �� u

h0

(x; �). The �tting coe�cient �0(2) for �xed values of x; � essentially depends on the quantity
f(5)(�0) with �0 = �0(x; �; u∞), which is a non-linear function of u∞.
Taking into account estimates (26) and (28), we establish, similarly to [8, 20], that in the

case of the Prandtl problem (2), (7) and (1) there are no �tted operator schemes (22a),
(22b) and (23) approximating problem (24), for which the functions uh(x; y) converge to the
function u(x; y) �-uniformly.

Theorem 1
Assume that for the boundary value problem (24) we have constructed the �nite di�erence
�tted scheme (22a) and (22b) on the mesh �Gh(23), and let the grid equations have form (22a)
and (30), (31) on the meshes Gh and Gh�, respectively. In the class of �nite di�erence schemes
under consideration (satisfying (32)) there does not exist a scheme, whose solutions converge
�-uniformly as h1; h2→ 0.

Let us sketch the proof of Theorem 1. For more details we refer the reader to [20], where
a similar statement was proved for linear problems with a parabolic boundary layer.
The proof is performed by the contradiction method. Assume that on the grid �Gh(23) there

exists a �nite di�erence scheme which converge �-uniformly. Let us study this scheme.
By Uj(x; y)= (uj(x; y); vj(x; y)), j=1; 2; : : : ; J we denote the solution of problem (4)

for u∞= j. Let uh
j (x; y), (x; y)∈ �Gh be the solution of the di�erence scheme (22a), (22b) and

(23) which approximates problem (24) related to the function Uj(x; y). We denote
!j(x; y)= uh

j (x; y)− uj(x; y), (x; y)∈ �Gh, j=1; : : : ; J .
Assume �0 = 2h2�, h2�=m1. We consider equation (29) on the set

G0
� =(x0; x

0]× (0; �0]= {(x; �) : x0¡x6x0; 0¡�¡2h2�}

This set corresponds to the set G0 in the variables x; y. On the set �G0 the grid �G0
h = �G0 ∩ �Gh

is de�ned. We shall consider the functions !j(x; y) for (x; y)∈ �G0
h . The functions !j(x; y) and

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:915–936



NUMERICAL TECHNIQUES FOR FLOW PROBLEMS WITH SINGULARITIES 929

!0j (x; �) are solutions of the following problems:

�(33)(!j(x; y))=F j
(33)(x; y) (x; y)∈G0

h

!j(x; y)=’j
(33)(x; y) (x; y)∈ S0h

(33)

�0(34)(!
0
j (x; �))=F j

(34)(x; �) (x; �)∈G0
h�

!0j (x; �)=’j
(34)(x; �) (x; �)∈ S0h�; j=1; : : : ; J

(34)

Here

�(33)(!j(x; y))≡ �1∗(22a)(!j(x; y))− [uj(x; y)� �x + � �xuj(x; y)]!j(x; y)

F j
(33)(x; y) =−�1∗(22a)(uj(x; y)) (x; y)∈G0

h

’j
(33)(x; y) = uh

j (x; y)− uj(x; y) (x; y)∈ S0h

�0(34)(!
0
j (x; �))≡ �1∗0(30)(!0j (x; �))− [u0j (x; �)� �x + � �xu0j (x; �)]!

0
j (x; �)

F j
(34)(x; �) =−�1∗0(30)(u0j (x; �)) (x; �)∈G0

h�

’j
(34)(x; �) = uh0

j (x; �)− u0j (x; �) (x; �)∈ S0h�

the operators �(33)(!j(x; y)), �1∗(22a)(uj(x; y)) (operators �0(34)(!
0
j (x; �)), �1∗0(30)(u

0
j (x; �)))

contain the functions vj(x; y) (functions ṽ0j (x; �)= �−1=2v0j (x; �)).
It is convenient to introduce auxiliary ‘�tting’ coe�cients �j

(i) by setting

�j
(1)(x; y; h2; uj(·)) =

@
@y

uj(x; y)[� �y uj(x; y)]−1

�j
(2)(x; y; h2; uj(·)) =

@2

@y2
uj(x; y)[�y �yuj(x; y)]−1; j=1; : : : ; J

Taking into account these coe�cients, we obtain the relations

F j
(33)(x; y) = �(�(2) − �j

(2))�y �yuj(x; y)

− (�(1) − �j
(1))vj(x; y) � �y uj(x; y) + uj(x; y)

(
@
@x

− � �x

)
uj(x; y)

F j
(34)(x; �) = (�

0
(2) − �j0

(2))�� �� u
0
j (x; �)

− (�0(1) − �j 0
(1))ṽ

0
j (x; �)� ��u

0
j (x; �) + u0j (x; �)

(
@
@x

− � �x

)
u0j (x; �)

where �j0
(i)(x; �; h2�; u

0
j (·))= �j

(i)(x; y(�); h2 = h2(h2�); uj(·)).
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Instead of problem (33) we consider the auxiliary problem

�(33)(!j(x; y))=F j
(33) (x; y) (x; y)∈G0

h

!j(x; y)=0; (x; y)∈ S0h ; j=1; : : : ; J
(35)

To compute the function !j(x; y), i.e. the solution of problem (35), we must solve the bound-
ary value problem

L1∗(24)(u(x; y))=0 (x; y)∈G0

u(x; y)=uj(x; t) (x; y)∈ S0; j=1; : : : ; J
(36)

and the corresponding di�erence scheme

�1∗(22a)(u
h(x; y))=0 (x; y)∈G0

h

uh(x; y)=uj(x; y) (x; y)∈ S0h ; j=1; : : : ; J
(37)

Here L1∗=L1∗(vj(·)), �1∗=�1∗(vj(·)); !j(x; y)= uh
j (x; y) − uj(x; y), uj(x; y) and uh

j (x; y) are
the solutions of problems (36) and (37).
Assuming that the solution of problem (37) converges �-uniformly to the solution of

problem (36), we come to a contradiction. By the assumption, we have

|!j(x; y)|6�1(h1; h2) (x; y)∈ �G0
h ; j=1; : : : ; J (38)

where �1(h1; h2)→ 0 for h1; h2→ 0.
In the variables x; � problem (35) takes the form

�0(34)(!
0
j (x; �))=F j

(34)(x; �) (x; �)∈G0
h�

!0j (x; �)=0 (x; �)∈ S0h�; j=1; : : : ; J
(39)

Let us introduce the function wj(x)=!0j (x; h2�). This function is the solution of the discrete
Cauchy problem

�(40)wj(x)≡ (1 + 	(x))� �xwj(x)=F(40)(x); x∈!1
wj(x)=0; x= x0; j=1; : : : ; J

(40)

Here �!1 is a uniform mesh on [x0; x0] with stepsize h1, F(40)(x)=
∑4

k=1 Fk(x),

F1(x) =−(�0(1) − �j0
(1))(u

0
j (x; �))

−1ṽ0j (x; �)� �� u
0
j (x; �)

F2(x) = (�0(2) − �j0
(2))(u

0
j (x; �))

−1 �� �� u
0
j (x; �)

F3(x) =
(

@
@x

− � �x

)
u0j (x; �)

F4(x) =−(u0j (x; �))−1!0j (x; �)[� �x u0j (x; �) + �0(1)h
−1
2� ṽ0j (x; �) + �0(2)h

−2
2� ]

	(x) = (u0j (x; �))
−1!0j (x; �); �= h2�; j=1; : : : ; J
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Let h1; h2→ 0. Note that the value of h2�= �−1=2h2 =m1 is su�ciently small and bounded
away from zero (by the choice of �), and also u0j (x; �)¿m2 for �= h2�, x∈ [x0; x0]. By virtue
of condition (38) and also because the functions u0j (x; �), ṽ

0
j (x; �) are smooth with respect to

x, the functions 	(x), F3(x) and F4(x) become arbitrarily small for su�ciently small values
of h1; h2. Thus, the functions F1(x) and F2(x) are the main terms of the right-hand side of
equation (40).
Let us consider the functions F1(x); F2(x). These functions vanish for �0(i) = �j0

(i), i=1; 2. Note
that the function f(�), i.e. the solution of problem (6), can be decomposed (in virtue of the
di�erential equation) as follows:

f(�)=2−1f′′(0) �2[1− 2(5!)−1f′′(0)�3 + 22(8!)−1(f′′(0))2�6 + O(�9)]

Taking account of (5), we �nd

�j0
(1) = 1− 8−1f′′(0)j3=2�31 + O(h62�)

�j0
(2) = 6× 7−1(1− 420−1112f′′(0)j3=2�31) + O(h62�)

(u0j (x; �))
−1�� ��u

0
j (x; �) =−7× 24−1 f′′(0) x−1 j3=2 �1

× [1− 46× 105−1f′′(0)j3=2�31 + O(h62�)]

(u0j (x; �))
−1ṽ0j (x; �)� ��u

0
j (x; �) = 4

−1 f′′(0) x−1 j1=2(�1)−1

× [1− 15−1 f′′(0) j3=2 �31 + O(h62�)]; j=1; : : : ; J

where �1 = (2x)−1=2 h2�. Since the coe�cients �0(1), �0(2) do not depend on u∞ (and on the
value j), by choosing j we can alter the function F(40)(x) (and the integral, with respect to
x, from this function on the segment [x0; x0]) by a quantity of the order h−12� (of the order
(x0−x0) h−12� ). Under suitable choice of the value j, the variation of the function wj(x) on the
interval [x0; x0] reaches a quantity of the order (x0 − x0)h−12� for h1; h2→ 0, which contradicts
condition (38). Consequently, the solution of problem (37) does not converge to the solution
of problem (36) �-uniformly.
It is easily seen that the solution of problem (22a), (22b) and (23) (where the coe�cients

�(i)(22b) are independent of u∞) do not converge �-uniformly as well. This completes the proof
of Theorem 1.

Remark 1
The statement of Theorem 1 remains valid also if condition (31) is violated, that is, the
coe�cients �0(i) depend on �, and also condition (32) is replaced by the condition

|�0(i)(x; �; h1; h2�; �)|6M (x; �)∈Gh�; i=1; 2

Remark 2
By a similar way it can be shown that in the case of di�erence schemes on stencils with a
�nite number of nodes there do not exist �tted operator schemes convergent �-uniformly, if
the �tting coe�cients are independent of the value u∞.
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Remark 3
But if the �tting coe�cients in the di�erence scheme (22a), (22b) and (23) depend on u∞,
we have the following representation for these coe�cients �(i):

�(1)(x; y; �; u∞; h1; h2)=
f′′(�)
� �� f′(�)

; �(2)(x; y; �; u∞; h1; h2)=
f′′′(�)

�� �� f′(�)

where �= �(5)(x; y; �; u∞), �� ��
(�)= (h�)−1[��
(�)−� ��
(�)], ��
(�)= (h�)−1[
(�+h�)−
(�)],
h�=(2−1 �−1 u∞ x−1)1=2h2.

Remark 4
If we look at the di�erence schemes in question, namely, the classical scheme (22a), (28) and
the �tted scheme (22a) and (22b) on the mesh (23), their �tting coe�cients �(i) determined by
(28) and (22b) do not depend on the value of u∞, which de�nes the solution of problem (24).
We call these coe�cients �(i) the generalized �tting coe�cients. It follows from the above
considerations that in order to construct �-uniformly convergent schemes (both truly �tted
operator schemes and schemes consisting of a standard di�erence operator) whose generalized
�tting coe�cients are independent of u∞, the use of piecewise-uniform meshes condensing
in the parabolic boundary layer region is necessary. A similar conclusion is valid also in the
case of the Prandtl problem (2), (1), for which (24) is a model problem.

7. NUMERICAL EXPERIMENTS FOR THE PRANDTL PROBLEM

It is well known that, in the case of linear problems with parabolic boundary layers, standard
�nite di�erence schemes on piecewise-uniform �tted meshes yield numerical solutions that
converge �-uniformly (for the convergence proof and corroborant numerical results we refer
the reader, e.g. to References [8, 9, 16, 15]).
In the case of the non-linear problem (2), (1) and (7) having the self-similar solution, the

e�ciency of scheme (12) and (13) (scheme (14) and (13)) is demonstrated (see the error
Tables I–IV) by comparing the numerical solutions to the reference solution generated from
the computed solution to Blasius’ problem (6). The Blasius problem was numerically solved
by scheme (18a), (18b) and (16) on a su�ciently �ne mesh, namely with the number of
mesh intervals N =8192, which provided the required accuracy in the reference solution (5).
The parameters T; R of scheme (18a) and (18b) and the mesh size h are de�ned by (19) and
(21), respectively, where M1 = 1; M2 = 8 were taken for all values of �.
Graphs of the numerical approximations Uh(x; y)= (uh(x; y); vh(x; y)) to the velocity com-

ponents U (x; y)= (u(x; y); v(x; y)) with N =32 are shown in Figures 1 and 2 for �=0:01 and
�=0:00001, respectively. We see from these graphs that the velocity components u(x; y); v(x; y)
contain the boundary layer in a neighbourhood of the boundary at y=0, moreover, the second
component v(x; y) unboundedly grows as x→ 0.
The computed maximum pointwise errors for the normalized velocity components u(x; y)

and �−1=2v(x; y) are given in Tables I and II, respectively, for various values of � and N .
Tables III and IV list the computed maximum pointwise errors for the normalized partial
derivatives (@=@x)u(x; y) and �1=2(@=@y)u(x; y), respectively.
We observe from the above error tables that the maximum nodal errors decrease as N in-

creases for each value of the parameter � and that the maximum global error for a
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Table I. Computed maximum nodal errors for u(x; y) for various values of � and N .

� 8 16 32 64 128 256 512

20 0:420D− 2 0:459D− 2 0:287D− 2 0:166D− 2 0:898D− 3 0:450D− 3 0:211D− 3
2−2 0:509D− 1 0:248D− 1 0:124D− 1 0:622D− 2 0:312D− 2 0:157D− 2 0:792D− 3
2−4 0:207D + 0 0:787D− 1 0:352D− 1 0:167D− 1 0:817D− 2 0:404D− 2 0:202D− 2
2−6 0:220D + 0 0:115D + 0 0:616D− 1 0:326D− 1 0:156D− 1 0:762D− 2 0:378D− 2
2−8 0:213D + 0 0:114D + 0 0:616D− 1 0:340D− 1 0:189D− 1 0:105D− 1 0:581D− 2
2−10 0:211D + 0 0:114D + 0 0:616D− 1 0:340D− 1 0:189D− 1 0:105D− 1 0:581D− 2
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
2−20 0:208D + 0 0:113D + 0 0:616D− 1 0:340D− 1 0:189D− 1 0:105D− 1 0:581D− 2

Table II. Computed maximum nodal errors for �−1=2v(x; y) for various values of � and N .

� 8 16 32 64 128 256 512

20 0:533D + 0 0:374D + 0 0:213D + 0 0:108D + 0 0:536D− 1 0:268D− 1 0:142D− 1
2−2 0:106D + 1 0:677D + 0 0:371D + 0 0:194D + 0 0:101D + 0 0:531D− 1 0:287D− 1
2−4 0:396D + 1 0:163D + 1 0:763D + 0 0:382D + 0 0:197D + 0 0:104D + 0 0:562D− 1
2−6 0:457D + 1 0:271D + 1 0:154D + 1 0:849D + 0 0:416D + 0 0:215D + 0 0:114D + 0
2−8 0:448D + 1 0:269D + 1 0:154D + 1 0:893D + 0 0:523D + 0 0:309D + 0 0:183D + 0
2−10 0:437D + 1 0:268D + 1 0:154D + 1 0:893D + 0 0:523D + 0 0:309D + 0 0:183D + 0
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
2−20 0:424D + 1 0:267D + 1 0:154D + 1 0:893D + 0 0:523D + 0 0:309D + 0 0:183D + 0

Table III. Computed maximum nodal errors for (@=@x)u(x; y) for various values of � and N .

� 8 16 32 64 128 256 512

20 0:614D + 0 0:444D + 0 0:256D + 0 0:130D + 0 0:668D− 1 0:344D− 1 0:178D− 1
2−2 0:900D + 0 0:633D + 0 0:372D + 0 0:201D + 0 0:105D + 0 0:556D− 1 0:307D− 1
2−4 0:189D + 1 0:114D + 1 0:650D + 0 0:360D + 0 0:194D + 0 0:105D + 0 0:573D− 1
2−6 0:198D + 1 0:167D + 1 0:121D + 1 0:759D + 0 0:397D + 0 0:210D + 0 0:113D + 0
2−8 0:197D + 1 0:167D + 1 0:121D + 1 0:798D + 0 0:496D + 0 0:300D + 0 0:180D + 0
2−10 0:196D + 1 0:167D + 1 0:121D + 1 0:798D + 0 0:496D + 0 0:300D + 0 0:180D + 0
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
2−20 0:195D + 1 0:167D + 1 0:121D + 1 0:798D + 0 0:496D + 0 0:300D + 0 0:180D + 0
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Table IV. Computed maximum nodal errors for �1=2(@=@y)u(x; y) for various values of � and N .

� 8 16 32 64 128 256 512

20 0:703D− 1 0:357D− 1 0:180D− 1 0:914D− 2 0:471D− 2 0:249D− 2 0:139D− 2
2−2 0:193D + 0 0:111D + 0 0:603D− 1 0:315D− 1 0:162D− 1 0:819D− 2 0:414D− 2
2−4 0:266D + 0 0:140D + 0 0:703D− 1 0:357D− 1 0:180D− 1 0:914D− 2 0:471D− 2
2−6 0:279D + 0 0:192D + 0 0:118D + 0 0:703D− 1 0:357D− 1 0:180D− 1 0:914D− 2
2−8 0:279D + 0 0:192D + 0 0:118D + 0 0:733D− 1 0:432D− 1 0:248D− 1 0:141D− 1
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
2−20 0:279D + 0 0:192D + 0 0:118D + 0 0:733D− 1 0:432D− 1 0:248D− 1 0:141D− 1

0
0.2

0.4 0.6 0.8 1 1.2x 0
0.2

0.4
0.6

0.8
1

y

0
0.2
0.4
0.6
0.8

1
1.2

0
0.2

0.4 0.6 0.8 1 1.2x 0
0.2

0.4
0.6

0.8
1

y

0
0.5

1
1.5

2
2.5

3
3.5

4

uh �-1/2 vh

Figure 1. Graph of Uh(x; y) for �=0:01 and N =32.
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Figure 2. Graph of Uh(x; y) for �=0:00001 and N =32.
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particular N and all available values of �, the �-uniform error, also decreases with increas-
ing N . These results show experimentally that the di�erence scheme (12a)–(12d) and (13)
allows us to approximate �-uniformly (with controllable accuracy for arbitrary values of the
Reynolds number) the functions u(x; t), �−1=2v(x; y) and the partial derivatives (@=@x)u(x; y),
�1=2(@=@y)u(x; y); the order of �-uniform convergence is close to 1. Analogous results are
obtained for the numerical approximations to the partial derivatives �−1=2(@=@x)v(x; y), and
(@=@y)v(x; y).

8. CONCLUSION

In this paper, numerical approximations to the solution of Prandtl’s boundary value problem
for the boundary layer equations on a �at plate are given in a region including the boundary
layer, but outside a neighbourhood of its leading edge. A �nite di�erence scheme based on
a monotone �nite di�erence operator and piecewise-uniform meshes, which are re�ned in the
vicinity of the parabolic boundary layer, is constructed. The Blasius problem is numerically
solved to obtain a self-similar solution and this was used as a reference solution to determine
the accuracy of the numerical approximations. It is shown that the numerical approximations
converge independently of the Reynolds number. Thus, the direct numerical method based on
the �tted mesh method suggested in the paper allows us to approximate both the components
of the solution and their derivatives with controllable �-uniform accuracy; �=Re−1.
The applicability of �tted operator methods for Prandtl’s problem is also discussed. As is

shown, the technique based on �tted operator methods does not allow us to obtain �-uniform
numerical approximations for �ow problems with a parabolic boundary layer, in particular,
for Prandtl’s problem for �ow past a plate. Thus, the use of meshes re�ned in the parabolic
layer region is necessary to construct �-uniform direct numerical methods for �ow problems.
The numerical technique presented in the paper may be also applicable to the construction

and study of �-uniform direct numerical methods for more complicated problems of �ow past
a wedge or a body of revolution, �ow in converging channels, stagnation �ow and others.
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